

 MicroPython for ESP32 Development Workshop

 MicroPython for ESP32 Development Workshop

 Agus Kurniawan

 1st Edition, 2017

 Copyright © 2017 Agus Kurniawan

 Table of Contents

 MicroPython for ESP32 Development Workshop

 Preface

 1. Preparing Development Environment

 1.1 MicroPython Boards for ESP32

 1.2 Electronics Components

 1.2.1 Arduino Starter Kit

 1.2.2 Fritzing

 1.2.3 Cooking-Hacks: Arduino Starter Kit

 1.2.4 Arduino Sidekick Basic kit v2

 1.2.5 Grove - Starter Kit for Arduino

 1.2.6 DFRobot - Arduino Kit for Beginner v3

 1.3 Development Tools

 1.4 Testing

 2. Setting Up MicroPython

 2.1 Getting Started

 2.2 Connecting MicroPython Boards to Computer

 2.3 Flashing The Latest MicroPython Firmware

 2.4 Development Tools

 2.5 Python programming

 2.6 Hello MicroPython: Blinking LED

 2.6.1 Wiring

 2.6.2 Writing Program Using Serial/UART Tool

 2.7 Uploading Python Script File to MicroPython Board

 3. GPIO Programming

 3.1 Getting Started

 3.2 Wiring

 3.3 Writing a Program

 3.4 Testing

 4. PWM and Analog Input

 4.1 Getting Started

 4.2 Demo Analog Output (PWM) : RGB LED

 4.2.1 Wiring

 4.2.2 Writing Program

 4.2.3 Testing

 4.3 Demo Analog Input: Working with Potentiometer

 4.3.1 Wiring

 4.3.2 Writing Program

 4.3.3 Testing

 5. Working with I2C

 5.1 Getting Started

 5.2 Writing Program

 5.3 Writing Program

 5.4 Testing

 6. Working with UART

 6.1 Getting Started

 6.2 Wiring

 6.3 Writing a Program

 6.4 Testing

 7. Working with SPI

 7.1 Getting Started

 7.2 Wiring

 7.3 Writing a Program

 7.4 Testing

 8. Working with DHT Module

 8.1 Getting Started

 8.2 Wiring

 8.3 Writing MicroPython Program

 8.4 Testing

 9. Working with WiFi

 9.1 Getting Started

 9.2 Scanning WiFi Hotspot

 9.3 Developing WiFi Application

 Source Code

 My Books for ESP8266 Development

 Contact

 Preface

 This book was written to help anyone want to get started with MicroPython development for ESP32 boards. It describes the basic elements of MicroPython development.

 Agus Kurniawan

 Depok, August 2017

 1. Preparing Development Environment

 1.1 MicroPython Boards for ESP32

 MicroPython is a lean and efficient implementation of the Python programming language that includes a small subset of the Python standard library and is optimised to run on microcontrollers and in constrained environments. This book will focus on MicroPython for ESP32 chip.

 The following is a sample of ESP32 Module.

 [image: em1-6]

 We can deploy MicroPython on ESP32 boards. For instance, you can deploy on these boards:

 	Espressif ESP32 Development Board, https://www.adafruit.com/product/3269

 	SparkFun ESP32 Thing, https://www.sparkfun.com/products/13907

 	Watterott ESP-WROOM-32-Breakout, http://www.watterott.com/de/ESP-WROOM32-Breakout

 	NodeMCU-32S Lua WiFi IOT Development board, http://www.aliexpress.com

 	Adafruit HUZZAH32 – ESP32 Feather Board, https://www.adafruit.com/product/3405

 You can find other development board based on ESP32.

 NodeMCU-32S Lua WiFi IOT Development board:

 [image: em1-4]

 SparkFun ESP32 Thing.

 [image: em1-5]

 Watterott ESP-WROOM-32-Breakout.

 [image: em1-1]

 1.2 Electronics Components

 We need electronic components to build our testing, for instance, Resistor, LED, sensor devices and etc. I recommend you can buy electronic component kit. We can use electronics kit from Arduino to be developed on MicroPython board. The following is a list of electronics kit which can be used in our case.

 1.2.1 Arduino Starter Kit

 Store website: http://arduino.cc/en/Main/ArduinoStarterKit

 [image: arduinokit]

 1.2.2 Fritzing

 Store website: http://shop.fritzing.org/ .

 You can buy Fritzing Starter Kit with Arduino UNO or Fritzing Starter Kit with Arduino Mega.

 [image: Kit_-Starter-Mainimage]

 [image: Kit_-Starter_-Arduino-Mega-Mainimage]

 1.2.3 Cooking-Hacks: Arduino Starter Kit

 Store website: http://www.cooking-hacks.com/index.php/shop/arduino/starter-kits/arduino-starter-kit.html

 [image: arduino_starter_kit]

 1.2.4 Arduino Sidekick Basic kit v2

 Store website: http://www.seeedstudio.com/depot/Sidekick-Basic-Kit-for-Arduino-V2-p-1858.html

 You also can find this kit on this online store.

 http://www.exp-tech.de/seeed-studio-sidekick-basic-kit-for-arduino-v2

 [image: SidekickKitV2]

 1.2.5 Grove - Starter Kit for Arduino

 Another option, you can buy this kit on Seeedstudio, http://www.seeedstudio.com/depot/Grove-Starter-Kit-for-Arduino-p-1855.html .

 [image: GroveStarterKitV3]

 1.2.6 DFRobot - Arduino Kit for Beginner v3

 DFRobot provides Arduino kit too. You can buy it on the following website.

 http://www.dfrobot.com/index.php?route=product/product&path=35_49&product_id=345

 [image: dfrobot]

 1.3 Development Tools

 To develop app with MicroPython target, we can use any editor. You can learn how to install it on chapter 2.

 1.4 Testing

 For testing, I used SparkFun ESP32 Thing boards for MicroPython on Windows, Linux and Mac.

 [image: em1-3]

 I also used Arduino Sidekick Basic kit for electronic components and some sensor and actuator devices.

 [image: kit]

 2. Setting Up MicroPython

 This chapter explains how to work on setting up MicroPython board.

 2.1 Getting Started

 In this chapter, we learn how to get started with MicroPython board. We try to reflash the latest MicroPython firmware and then test some basic scripts. For testing, I use SparkFun ESP32 Thing as sample for MicroPython board.

 2.2 Connecting MicroPython Boards to Computer

 Firstly, you connect MicroPython board to PC via USB/microUSB cable. After connected, you may get lighting on blue LED, for instance for, SparkFun ESp32 Thing board.

 [image: ep-2]

 If you are working on Windows platform, open Device Manager, you should see ESP32 board detected on Ports (COM & LPT). If you don't see your ESP32 board on Windows, you should install a windows driver for your ESP32 board.

 For Mac, you can check it on Terminal. Type this command.

 ls /dev/tty.usb*

 For Linux, you can use ls /dev/tty* .

 Then, you see a list of driver.

 For sample, you can see my board that is recognized as /dev/tty.usbserial-DN02MX9H .

 [image: ep2-3]

 2.3 Flashing The Latest MicroPython Firmware

 In this section, we try to flash the latest MicroPython firmware. You can get the latest MicroPython firmware https://micropython.org/download#esp32. Download *.bin file.

 In this scenario, I try to flash MicroPython firmware on Windows, OSX and Linux.

 We can use esptool.py tool from https://github.com/espressif/esptool to deploy MicroPython firmware to ESP32 boards. This tool also is recommended for Windows platform. You can install it via pip.

 $ pip install esptool

 You can download the latest MicroPython for ESP32 on https://micropython.org/download#esp32. It's daily build firmware. Firstly, we clear the existing firmware on ESP32 board. Then, we flash MicroPython.

 For instance, I flash my SparkFun ESP32 Thing on port /dev/cu.usbserial-DN02MX9H and MicroPython firmware, esp32-20170818-v1.9.1-436-gd3ad3fdb.bin. The flash baudrate is 115200.

 $ esptool.py --port /dev/tty.usbserial-DN02MX9H erase_flash
$ esptool.py --chip esp32 --port /dev/tty.usbserial-DN02MX9H --baud 115200 write_flash --flash_size=detect 0x1000 esp32-20170818-v1.9.1-436-gd3ad3fdb.bin

 [image: ep2-4]

 After completed flashing, you reset your board. Then, using a serial tool, such as CoolTerm (http://freeware.the-meiers.org), you should connect to ESP32 board. Don't forget to use baudrate 115200. After connected, you should see ">>>". If you don't see it, please press ENTER on your keyboard.

 [image: ep2-9]

 If you want to see booting messages on MicroPython, you can press RST (Reset) button your ESP32 board.

 For testing, you can type this command.

 >>> print('hello micropython')

 You should see "hello micropython" response from MicroPython board.

 [image: ep2-6]

 2.4 Development Tools

 To write MicroPython codes, you can use any text editor, for instance, Visual Studio Code from Microsoft, http://visualstudio.com.

 [image: ep2-10]

 2.5 Python programming

 You should have basic knowledge about Python programming to develop MicropPython program. I recommend you read Python tutorial on books or online tutorial.

 I also write a book about Python, with titled Python Programming by Example. You can review it on http://blog.aguskurniawan.net/post/pythonbook01.aspx.

 [image: py_thumbnail01]

 2.6 Hello MicroPython: Blinking LED

 In this section, we build a blinking LED program via Python shell via MicroPython firmware. We use serial tool to write a program.

 Firstly, you must know MicroPython board layout, for instance ESP32 on SparkFun ESP32 Thing board, you can see the layout as follows.

 [image: devlayout]

 [image: devlayout2]

 2.6.1 Wiring

 In this case, we don't do anything. ESP32 board usually provides built-in LED. For my ESP32 board, SparkFun ESP32 Things, has already built-in LED that is connected to GPIO5.

 Now you connect ESP32 board to Computer via USB cable.

 [image: ep2-1]

 2.6.2 Writing Program Using Serial/UART Tool

 The first demo is to blink a LED. Type this script per lin on Serial/UART tool.

 from machine import Pin

led = Pin(5, Pin.OUT)
led.value(1) # turn on
led.value(0) # turn off

 [image: ep2-7]

 This script will turn on a LED on GPIO5 and then turn off it. You can change GPIO value based on your ESP32 board.

 If you should see lighting LED after executed led.value(1).

 [image: ep-2]

 We want to run blinking continuously. Now we try to build a blinking LED. Type this script.

 from machine import Pin
import time

led = Pin(5, Pin.OUT)

while 1:
 led.value(1)
 time.sleep(2)
 led.value(0)
 time.sleep(2)

 The last script, press backspace/delete key keyboard to exit from while looping. Then, press ENTER to start the program.

 [image: ep2-8]

 You should see a blinking LED. If you want to stop, you can press RST button on ESP32 board.

 2.7 Uploading Python Script File to MicroPython Board

 In this section, I show you how to upload our Python file to MicroPython ESP32 board such as SparkFun ESP32 Thing board and then execute it. Firstly, we use the same wiring on previous section. Then, we create a file, called blinksvr.py, and write these scripts.

 from machine import Pin
import time

def run():
 led = Pin(5, Pin.OUT)
 while 1:
 led.value(1)
 time.sleep(2)
 led.value(0)
 time.sleep(2)

 To upload this file, we can use ampy from Adafruit. You can install it using pip.

 $ pip install adafruit-ampy

 If you are interested this tool, you can visit the official project on https://github.com/adafruit/ampy.

 You can upload Python file using ampy.

 $ ampy --port /dev/tty.usbserial-DN02MX9H put blinksvr.py

 [image: ep2-11]

 You change values on port and file name,

 Now you can check this file on MicroPython terminal.

 [image: ep2-12]

 If you have problems while upload the file, you should reset your board. Make sure there is no application that uses board serial port.

 Then, you can run by typing these command on serial terminal.

 >>> import blinksvr
>>> blinksvr.run()

 You should blinking LED.

 [image: ep2-13]

 As we know, your MicroPython board may has limited storage. If you want to delete the file, you can type this command, for instance, deleting blinksvr.py.

 >>> import os
>>> os.remove('blinksvr.py')

 [image: ep2-14]

 If your program is still running, please reset your board and then delete the file.

 3. GPIO Programming

 In this chapter I'm going to explain how to work with GPIO on MicroPython.

 3.1 Getting Started

 In general, GPIO can be used to control digital I/O on MicroPython boards. For MicroPython board-based ESP32, you should GPIO pins that are exposed by ESP32 board. Please check your board layout. For instance, the following is SparkFun ESP32 Thing layout.

 [image: devlayout][image: devlayout2]

 In this chapter, we build a program to illustrate how MicroPython GPIO work. We need a LED and a pushbutton. For testing, I used SparkFun ESP32 Thing board as MicroPython board.

 Let's start!.

 3.2 Wiring

 Since I use SparkFun ESP32 Thing board, a LED and push button are already available. A LED is connected to GPIO5 and a push button is connected to GPIO0.

 3.3 Writing a Program

 To create a program, we just create a new Python file, called ledbutton.py. Then, write these scripts.

 from machine import Pin

def run():
 print('demo digital I/O')
 led = Pin(5, Pin.OUT) # create output pin on GPIO5
 button = Pin(0, Pin.IN) # create output pin on GPIO0
 while 1:
 state = button.value()
 if state > 0:
 led.value(0)
 else:
 led.value(1)

 Save these scripts.

 3.4 Testing

 Now you can upload and run this program to MicroPython board via ampy. Now you can run it using MicroPython terminal. Type these command

 >>> import ledbutton
>>> ledbutton.run()

 [image: es3-3]

 For testing, try to press push button. You should see a lighting LED.

 [image: ep3-1]

 [image: ep3-2]

 4. PWM and Analog Input

 This chapter explains how to work with MicroPython board based ESP32 Analog I/O.

 4.1 Getting Started

 In this chapter, we learn how to work with PWM and Analog Input. For testing, I use NodeMCU board as MicroPython board. On the ESP32 board, we can use all GPIO pins for PWM.

 You can see a sample of ESP32 board from SparkFun.

 [image: devlayout]

 [image: devlayout2]

 In this chapter, we try to access MicroPython Analog I/O using MicroPython program. There are two scenarios for our cases:

 	Controlling RGB LED

 	Reading Analog input using Potentiometer

 Let's start.

 4.2 Demo Analog Output (PWM) : RGB LED

 In this scenario we build a MicroPython program to control RGB LED color using MicroPython Analog output (PWM). RGB LED has 4 pins that you can see it on Figure below.

 [image: p5_b1]

 To understand these pins, you can see the following Figure.

 [image: p5_b2]

 Note:

 	Pin 1: Red

 	Pin 2: Common pin

 	Pin 3: Green

 	Pin 4: Blue

 Now we can start to build a MicroPython application and hardware implementation.

 4.2.1 Wiring

 For our testing, we configure the following PWM pins.

 	RGB LED pin 1 (red) is connected to ESP32 GPIO22

 	RGB LED pin 2 is connected to ESP32 3V3 (VCC +3.3V)

 	RGB LED pin 3 (green) is connected to ESP32 GPIO19

 	RGB LED pin 4 (blue) is connected to ESP32 GPIO23

 Here is a sample implementation with SparkFun ESP32 Thing board and RGB Led.

 [image: es4-1]

 4.2.2 Writing Program

 To display a certain color, we must combine colors from red, green, blue. NodeMCU provides API for PWM which can set a value from 0 to 1023 using PWM library.

 Let"s start to build a program. Firstly, create a file, called pwmdemo.py. Then, write these scripts.

 from machine import Pin, PWM
import time

gpio_red = 22
gpio_green = 19
gpio_blue = 23

def set_rgb(red, green, blue):
 pwm_red = PWM(Pin(gpio_red), freq=1000, duty=red)
 pwm_green = PWM(Pin(gpio_green), freq=1000, duty=green)
 pwm_blue = PWM(Pin(gpio_blue), freq=1000, duty=blue)

 time.sleep(2)
 pwm_red.deinit()
 pwm_green.deinit()
 pwm_blue.deinit()

def run():
 print('print PWM with RGB led')

 while 1:
 print('red')
 set_rgb(1023, 0, 0)
 print('green')
 set_rgb(0, 1023, 0)
 print('blue')
 set_rgb(0, 0, 1023)
 print('yellow')
 set_rgb(1023, 1023, 0)
 print('purple')
 set_rgb(323, 0, 323)
 print('aqua')
 set_rgb(0, 1023, 1023)

 This program will generate six colors: red, green, blue, yellow, purple, and aqua.

 Save this file.

 4.2.3 Testing

 Upload and run the program. Then, run the program as follows.

 >>> import pwmdemo
>>> pwmdemo.run()

 [image: es4-7]

 You should see several color on RGB LED. The following is a sample demo on RGB LED.

 [image: es4-2]

 [image: es4-3]

 [image: es4-4]

 [image: es4-5]

 4.3 Demo Analog Input: Working with Potentiometer

 In this section, we learn how to read analog input on MicroPython board. For illustration, I use Potentiometer as analog input source. Our scenario is to read analog value from Potentiometer. Then, display it on Lua shell.

 ESP32 only has several ADC pins. For instance, you can see ADC pins on SparkFun ESP32 Thing board as below.

 [image: devlayout]

 [image: devlayout2]

 Let's start!.

 4.3.1 Wiring

 To understand Potentiometer, you see its scheme in Figure below.

 [image: ch4s-1]

 You can connect VCC to ESP32 board on 3V3 pin (VCC +3.3V). Vout to ESP32 board Analog input on GPIO36 (ADC1_0). In addition, GND to ESP32 board GND. The following is hardware implementation. I use slide potentiometer.

 [image: es4-6]

 4.3.2 Writing Program

 Firstly, create a file, called adcdemo.py. To read analog input, we can use adc.read() function. Ok, Let's write these scripts.

 from machine import Pin, ADC
import time

gpio_adc = 36

def run():
 print('ADC demo')

 while 1:
 adc = ADC(Pin(gpio_adc))
 print('ADC: ' + str(adc.read()))
 time.sleep(2)

 Save this code.

 4.3.3 Testing

 Upload and run this program. If succeed, you can run the program.

 >>> import adcdemo
>>> adcdemo.run()

 You should see the output on MicroPython terminal. Please change values on potentiometer

 [image: es4-8]

 5. Working with I2C

 In this chapter we learn how to work with I2C on MicroPython board.

 5.1 Getting Started

 The I2C (Inter-Integrated Circuit) bus was designed by Philips in the early '80s to allow easy communication between components which reside on the same circuit board. TWI stands for Two Wire Interface and for most marts this bus is identical to I²C. The name TWI was introduced by Atmel and other companies to avoid conflicts with trademark issues related to I²C.

 I2C bus consists of two wires, SDA (Serial Data Line) and SCL (Serial Clock Line). MicroPython supports all pins for I2C software.

 [image: devlayout]

 [image: devlayout2]

 For testing, I used PCF8591 AD/DA Converter module with sensor and actuator devices. You can find it on the following online store:

 	Amazon, http://www.amazon.com/PCF8591-Converter-Module-Digital-Conversion/dp/B00BXX4UWC/

 	eBay, http://www.ebay.com

 	Dealextreme, http://www.dx.com/p/pcf8591-ad-da-analog-to-digital-digital-to-analog-converter-module-w-dupont-cable-deep-blue-336384

 	Aliexpress, http://www.aliexpress.com/

 In addition, you can find this device on your local electronics store/online store.

 [image: ch5-1]

 This module has mini form model too, for instance, you can find it on Amazon, http://www.amazon.com/WaveShare-PCF8591T-Converter-Evaluation-Development/dp/B00KM6X2OI/ .

 [image: ch5-2]

 This module use PCF8591 IC and you can read the datasheet on the following URLs.

 	http://www.electrodragon.com/w/images/e/ed/PCF8591.pdf

 	http://www.nxp.com/documents/data_sheet/PCF8591.pdf

 For testing I2C on MicroPython, I use PCF8591 AD/DA Converter module and ESP32 module.

 Let's start.

 5.2 Writing Program

 We connect PCF8591 AD/DA Converter module to ESP32 board directly.

 The following is our wiring lab:

 	PCF8591 AD/DA Converter module SDA --> ESP32 SDA (GPIO21)

 	PCF8591 AD/DA Converter module SCL--> ESP32 SCL (GPIO22)

 	PCF8591 AD/DA Converter module VCC --> ESP32 VCC (+3.3V)

 	PCF8591 AD/DA Converter module GND --> ESP32 GND

 Hardware implementation can be shown in Figure below.

 [image: es5-1]

 5.3 Writing Program

 Now you can start to write a MicroPython program for ESP32 board. Create a file, called i2cdemo.py and write these scripts.

 from machine import Pin, I2C
import time

def run():
 print('read sensor from i2c protocol')
 PCF8591 = 0x48 # I2C bus address
 PCF8591_ADC_CH0 = '\x00' # thermistor
 PCF8591_ADC_CH1 = '\x01' # photo-voltaic cell
 PCF8591_ADC_CH3 = '\x03' # potentiometer

 # construct an I2C bus
 gpio_scl = Pin(22)
 gpio_sda = Pin(21)
 i2c = I2C(scl=gpio_scl, sda=gpio_sda, freq=100000)

 while 1:
 # read thermistor
 i2c.writeto(PCF8591, PCF8591_ADC_CH0)
 i2c.readfrom(PCF8591, 1)
 data = i2c.readfrom(PCF8591, 1)
 print('Thermistor: ' + str(ord(chr(data[0]))))

 # photo-voltaic cell
 i2c.writeto(PCF8591, PCF8591_ADC_CH1)
 i2c.readfrom(PCF8591, 1)
 data = i2c.readfrom(PCF8591, 1)
 print('photo-voltaic: ' + str(ord(chr(data[0]))))

 # potentiometer
 i2c.writeto(PCF8591, PCF8591_ADC_CH3)
 i2c.readfrom(PCF8591, 1)
 data = i2c.readfrom(PCF8591, 1)
 print('potentiometer: ' + str(ord(chr(data[0]))))

 time.sleep(2)

 Save this code.

 5.4 Testing

 Now you can upload and run the MicroPython program to ESP32 board. You can run this command in MicroPython terminal.

 >>> import i2csensor
>>> i2csensor.run()

 If success, you should see the program output on MicroPython terminal. The following is a sample output.

 [image: es5-2]

 6. Working with UART

 In this chapter I'm going to explain how to access UART on MicroPython board.

 6.1 Getting Started

 ESP32 chip provides three UARTs. You can see them on your ESP32 board. For instance, you can see UART pins on SparkFun ESP32 Thing board.

 [image: devlayout]

 [image: devlayout2]

 We can access UART using UART library.

 In this chapter, I use Arduino board as UART source. We read incoming message from UART.

 Let's start!.

 6.2 Wiring

 In this scenario, I use Arduino Uno which is connected to ESP32 board. Since my ESP32 board, SparkFun ESP32 Thing uses UART0 for USB so we connect Arduino to ESP32 board via UART2. We should connect RX pin to TX pin and TX pin to RX pin. The following is our wiring.

 	ESP32 GPIO17 (U2_TXD) is connected to Arduino Digital 10 (RX)

 	ESP32 GPIO16 (U2_RXD) is connected to Arduino Digital 11 (TX)

 	ESP32 GND is connected to Arduino GND (optional)

 My wiring implementation can be seen in Figure below.

 [image: es6-1]

 6.3 Writing a Program

 Firstly, we write a program for Arduino using Arduino IDE. We use SoftwareSerial to access Serial on Digital 10 and 11. This program will wait incoming UART data and then send to Arduino UART on 0 and 1 pins.

 Write this program.

 #include <SoftwareSerial.h>
SoftwareSerial mySerial(10, 11); // RX, TX

void setup()
{
 Serial.begin(9600);
 mySerial.begin(9600);
}

void loop()
{
 if (mySerial.available() > 0) {
 Serial.write(mySerial.read());
 }
}

 [image: esp6-3]

 Save this program. Then, upload it to Arduino board. Before uploading, please make sure Arduino UART (digital 0, 1, 10, and 11 pins) doesn't connect to any board.

 The next step is to write a program for ESP32 board. Create a file, called uartdemo.py. Write these scripts.

 from machine import UART
import time

def run():
 print('demo UART')

 uart = UART(2, baudrate=9600)
 counter = 50
 while 1:
 uart.write(str(counter) + '\r\n')
 time.sleep(2)
 counter += 1
 if counter > 70:
 counter = 50

 Save this file.

 6.4 Testing

 Now you can upload and run MicroPython program via ampy tool. If done, connect ESP32 UART to Arduino UART (Digital pins: 10 and 11). Now you can run Python program on MicroPython terminal from ESP32 board.

 To see the UART output, open Serial Monitor tool from Arduino IDE. Set baud 9600. You should see the UART output.

 [image: es6-3]

 The following is program output on MicroPython terminal.

 [image: es6-2]

 7. Working with SPI

 In this chapter I'm going to explain how to work with SPI on MicroPython board.

 7.1 Getting Started

 The Serial Peripheral Interface (SPI) is a communication bus that is used to interface one or more slave peripheral integrated circuits (ICs) to a single master SPI device; usually a microcontroller or microprocessor of some sort.

 SPI in ESP32 board can be defined on the following pins:

 	MOSI

 	MISO

 	SCK

 You can see these pins on SPI SparkFun ESP32 Thing board, shown in Figure below.

 [image: devlayout]

 [image: devlayout2]

 We can use all pins for SPI. To access SPI, we can use SPI library.

 In this chapter, I develop SPI Loopback with MicroPython board.

 Let's start!.

 7.2 Wiring

 For testing, we connect ESP32 MOSI (GPIO23) to MISO (GPIO19) using a jumper.

 The following is a sample of wiring.

 [image: es7-1]

 7.3 Writing a Program

 The next step is to write a program for MicroPython board. Create a file, called spidemo.py, and write these scripts.

 from machine import Pin, SPI
import random
import time

def run():
 print('demo spi')
 gpio_sck = Pin(18)
 gpio_mosi = Pin(23)
 gpio_miso = Pin(19)

 spi = SPI(2, sck=gpio_sck, mosi=gpio_mosi, miso=gpio_miso)
 while 1:
 tx = ''.join(chr(random.randint(50,85)) for _ in range(4))
 rx = bytearray(4)

 spi.write_readinto(tx,rx)

 print('tx: ' + str(tx))
 print('rx: ' + str(rx))

 time.sleep(2)

 Save this code.

 7.4 Testing

 Now you can upload MicroPython program to MicroPython board on MicroPython terminal. If done, you can run the program.

 >>> import spidemo
>>> spidemo.run()

 You should see received data from SPI.

 [image: es7-2]

 8. Working with DHT Module

 In this chapter I'm going to explain how to work with DHT module on MicroPython boards.

 8.1 Getting Started

 In this chapter, we try to develop a simple application to access DHT module. This module can sense temperature and humidity. It's easy to find in electronic stores. You can see DHT22 layout in Figure below.

 [image: dht22]

 8.2 Wiring

 I use SparkFun ESP32 Thing for MicroPython board. The following is SparkFun ESP32 Thing layout.

 [image: devlayout]

 [image: devlayout2]

 Our wiring for DHT22 and ESP32 as follows:

 	DHT VCC is connected to ESP32 3.3V

 	DHT GND is connected to ESP32 GND

 	DHT Data is connected to ESP32 GPIO5 (D1)

 The following is our implementation.

 [image: es8-1]

 8.3 Writing MicroPython Program

 Now we can access DHT using dht module from MicroPython. Open editor and write these scripts.

 from machine import Pin
import dht
import time

def run():
 print('dht module demo')

 gpio_dht = Pin(21)
 d = dht.DHT22(gpio_dht)

 led = Pin(5, Pin.OUT)
 while 1:
 led.value(1)
 d.measure()
 temperature = d.temperature()
 humidity = d.humidity()

 print('Temperature: ' + str(temperature) + ' Celsius')
 print('Humidity: ' + str(humidity) + ' % RH')
 led.value(0)
 time.sleep(2)

 Save this program as dhtdemo.py.

 8.4 Testing

 Now you can upload dhtdemo.py to MicroPython board via ampy terminal. Then, run the program on MicroPython terminal.

 >>> import dhtdemo
>>> dhtdemo.run()

 You should see temperature and humidity on Terminal.

 [image: es8-2]

 9. Working with WiFi

 In this chapter I'm going to explain how to work with WiFi on MicroPython boards.

 9.1 Getting Started

 In this chapter, we try to develop a simple application to access WiFi module.

 9.2 Scanning WiFi Hotspot

 I use SparkFun ESP32 Thing for MicroPython board. We try to scan existing WiFi. Write these scripts.

 from machine import Pin
import network
import time

led = Pin(5, Pin.OUT)
wlan = network.WLAN(network.STA_IF)
wlan.active(True)

def run():
 print('Demo wifi scanning')
 while 1:
 led.value(1)
 print('scanning wifi...')

 result = wlan.scan()
 print('done')
 print(result)
 led.value(0)

 time.sleep(5)

 Save this program as wifiscan.py.

 Then, upload the program and run it.

 >>> import wifiscan
>>> wifiscan.run()

 [image: es9-1]

 9.3 Developing WiFi Application

 In this section, we develop a simple application to access a website. Firstly, we connect to existing WiFi and then try to send a HTTP request to a webserver. Open editor and write these scripts.

 from machine import Pin
import network
import usocket as socket
import time

ssid = '<ssid>'
ssid_key = '<ssid_key'

wlan = network.WLAN(network.STA_IF)
wlan.active(True)

def run():
 print('Demo wifi scanning')

 print('Connecting to wifi')
 while not wlan.isconnected():
 wlan.connect(ssid, ssid_key)
 time.sleep(2)

 print('connected')

 # print mac and ip address
 mac = wlan.config('mac')
 ip = wlan.ifconfig()
 print(mac)
 print(ip)

 # test socket
 print('access a website')
 addr = socket.getaddrinfo('micropython.org', 80)[0][-1]
 s = socket.socket()
 s.connect(addr)
 s.send(b'GET / HTTP/1.1\r\nHost: micropython.org\r\n\r\n')
 data = s.recv(500)
 print(data)
 s.close()

 Save this program as wifidemo.py.

 Upload this program and run the program on MicroPython terminal.

 >>> import dhtdemo
>>> dhtdemo.run()

 Source Code

 You can download source code on http://www.aguskurniawan.net/book/esp32a234.zip .

 My Books for ESP8266 Development

 I wrote two books related to ESP8266 development.

 NodeMCU Development Workshop, http://blog.aguskurniawan.net/post/nodemcu.aspx.

 [image: thumbnail_nodemcu]

 SparkFun ESP8266 Thing Development Workshop, http://blog.aguskurniawan.net/post/sparkfun8266.aspx.

 [image: thumbnail_sparkfun]

 Contact

 If you have question related to this book, please contact me at aguskur@hotmail.com . My blog: http://blog.aguskurniawan.net

OEBPS/Images/em1-4.png

OEBPS/Images/devlayout2.jpg
sgar‘kfun

SP32 Thing

.u!gsl Wi o | 009
i n 218

Micro-B USB
(Power/Program)

OEBPS/Images/p5_b1.png

OEBPS/Images/es4-6.JPG

OEBPS/Images/arduino_starter_kit.png
>
e
okl

OEBPS/Images/es8-2.png
eoe CoolTerm.0

‘Dﬁﬂ@! X &[0

New Open Save Comect Disconnect Clear Data Options View Hex Help

>>> import dhtdemo

>>> dhtdeno. runQ)

dnt module deno

Tenperature: 29.4 Celsius
idity: 51.7 % RH

Tenperature: 29.3 Celsius

Humidity: 51.8 % RH

Temperature: 29.3 Celsius

Humidity: 51.8 % RH

29.3 Celsius

51.8 % RH
29.3 Celsius
Humidity: 51.8 % RH

‘usbserial-DNOZMX8H / 115200 8-N-1 @7X ©RS ©DOR @ 0cD
Connected 00:00:24 @rx @cis @0k @R

OEBPS/Images/em1-5.png

OEBPS/Images/ep2-1.JPG

OEBPS/Images/p5_b2.png

OEBPS/Images/es5-2.png
eoe CoolTerm.0

D@EB P F @ =06

New Open Save Comect Disconnect ClearData Options ViewHex Help

>>> import i2csensor
>>> i2csensor. run()

read sensor from 12c protocol
Thermistor: 115

photo-voltaic: 115
potentioneter: 78

‘usbserial-DNOZMX8H / 115200 8-N-1 @7X ©RS ©DOR @ 0cD
Connected 00:00:21 @rx @cis @0k @R

OEBPS/Images/es9-1.png
eoe CoolTerm.0

D@EB P F X @ =06

New Open Save Comect Discomnect ClearData Options View Hex Halp
-[0;32mI (89816) wifi: STASTART.[em

>>> wifiscan.runQ)

Demo wifi scanning

scanning Wifi...

.[0;32nI (98196) wifi: event 1.[em

done

[(b'b003F6_plus", b’ #\xce\xBO\XI2\xaa\x@2", 7, -21, 4, False),
Co'MIMING', b'T\Xbe\XF7X\xc4\XdB', 1, -71, 4, False), (b'b0O3f6",
b’ \x@2\x92f_\xd2", 7, -76, 4, False)]

scanning wii...

.[0;32nT (104896) wifi: event 1.[0n

done

[(b'b0B3f6_plus’, b’ A\xce\x0O\x12\xaa\xe2", 7, -20, 4, False),
Co'MIMING', b'T\xbe\XF7X\xc4\XdB', 1, -70, 4, False), (b'b03f6’,
‘h"\xaz\xng_\xaz‘, 7, <79, 4, False)]

usbseria-DNO2MXSH / 115200 8-N-1 @1x ORrs Qo @0
Connected 00:00:24 @rx @cis @0k @R

OEBPS/Images/SidekickKitV2.jpg
i
xxx !!,!! e
weee 11 [}

OEBPS/Images/cover.png
MicroPython
for ESP32

Development Workshop

Aius Kurniawan

OEBPS/Images/es5-1.JPG

OEBPS/Images/GroveStarterKitV3.jpg

OEBPS/Images/ep2-3.png
o080 meses—ctehsoas

lagusks Ls /deu/tty. usbs 7
Jdev/tey usbserial-ONO2MXOH
agusks.

OEBPS/Images/es4-3.JPG

OEBPS/Images/em1-1.png
O OO thtﬁcriacciiraw

OEBPS/Images/ep3-1.JPG

OEBPS/Images/esp6-3.png
00 Arduino_Serial | Arduino 1.6.11

Arduino_Serial

#include <Softwareserial.h>
SoftwareSerial mySerial(10, 11); // RX, TX

void setudd
{
Serial .begin(9600);
mySerial .begin(9600);
3

void loop()
1
if (nySerial.ovailobleQ) > 0) {
Serial.write(mySerial.read());
¥

¥

Arduino/Genino Uno on /dev/cu.usbmodem1411

OEBPS/Images/es7-1.JPG

OEBPS/Images/ep2-4.png
LX) 15 codes —-bash — 80x34

lagusks Ls /deu/tty. usbs [
Jdev/tey.usbserial-DNOZHXH

(agusks esptool.py ——port /dev/tty.usbserial-ONO2MXSH erase_flash I
esptool.py v2.0.1

Connecting.

Detecting chip type... ESP32
Chip 1s ESP3200WDQS (revision 0)
Uploading stub.

Running stub...
Stub running. ..

Erasing flash (this may take a while).
Chip erase conpleted successfully in 6.1s
Hard resetting.

(agusks esptool.py —-port /dev/tty.usbser1al-DND2MXOH --baud 46D
~flash_size=detect 0 esp32-20170818-v1.9.1-436-gd3ad310b.bin
esptool.py v2.0.1

Connecting.

Detecting chip type... ESP32
Chip 1s ESP3200WDQ (revision o)
Uploading stub.

Running stub...
Stub running. ..

Changing baud rate to 46
Changed.

Configuring flash size...
Auto-detected Flosh size! 4HD

Conpressed 1085904 bytes o 603722...

Wrote 1085904 bytes (603722 conpressed) at ox
585.0 kbit/s)

Hash of data veritied.

weite_flash -

90 1n 14.8 seconds (effective

Leaving...
Hard resetting,
agusks I

OEBPS/Images/ch4s-1.png

OEBPS/Images/ep2-10.png
bk py—codes
exvwonn y binkingloop 2y blnksvrpy x @ M

orensorrons fron machine Pin
binkingay. tine
binkingloop py
binksrpy. runl)

conts ted = Pin(s, pin.0um)

+ pycocne_ 1

acodo Led.voue(s)

Avdino Seril tine.sleep(2)
tedvalue(o)

Avduine_spi tine.sleep(2)

micropython-esp32
adedemo.py
Binking
binkingloop py
binksrpy.
andemopy
esp32-20170715-11.91-219-G35802.
esp32-20170818-41.01-436-g03045.
Fiesaveris
hellopy

B o ceonsorsy

054007 Ln13,Col1 Spacesé UTE8 LF Pyion @

OEBPS/Images/es4-2.JPG

OEBPS/Images/arduinokit.png

OEBPS/Images/es4-1.JPG

OEBPS/Images/devlayout.png
SparkFun ESP32 Thing (DEV-13907) =

sggmkfun

i
i]

=

v e 300 o — ey 0 2
VR ety e Gy i flskadaniied

oo om0 it o

Pt ot S oo N W
e) prscsemietatil
Vo s S

firesieveieity e

OEBPS/Images/ep2-11.png
fagusks

]
Py —-port /dev/tty.usbserial-DNO2HXOH put blinksur.py
agusks I

OEBPS/Images/es4-8.png
eoe CoolTerm.0

D@EB P F X @ =0 ‘

New Open Save Comect Disconnect ClearData Options ViewHex Help
(ADC: 4095
ADC: 4095
ADC: 4095
ADC: 4095
ADC: 4095
ADC: 4035
: 2390
2144
1410
2559
: 1957
1410
2073
: 2138
2107

‘usbserial-DNOZMX8H / 115200 8-N-1 @7X ©RS ©DOR @ 0cD
Connected 00:00:41 @rx @cis @0k @R

OEBPS/Images/es6-3.png
Send

@ Avoscrl Cwomnieck [oooud B Coroume

OEBPS/Images/ep2-12.png
eoe CoolTerm 0.

D@EHC B X & (6 ‘

New Open Save Comect Disconnect ClearData Options ViewHex Help

>>> import os
>>> 0s.listdirQ)
['boot.py’, 'blinksvr.py']

usbserlal-DNOZMXH / 115200 8-N-1 @71X OFRs ©QoR @oco
Comested 00:01:09 O @crs @ @R

OEBPS/Images/ep-2.JPG

OEBPS/Images/es3-3.png
eoe CoolTerm 0.

D@EHC B X & (6

New Open Save Comect Disconnect ClearData Options ViewHex Help

>>> import ledbutton

usbseria-DNOZMXSH | 115200 8-N-1 @ ©rs @om @oco ‘
R)

‘Comested 00:03:

OEBPS/Images/es7-2.png
eoe CoolTerm.0

D@EB P B X & =06

New Opon Save Comect Discomnect ClearData Options View Hex Halp
bytearray(b'38C6")
Hpe
: bytearray(b'HP<@")
: 9185
bytearray(b'9185')

5Q:
bytearray(b'4>Q: ")
1 G2K8
bytearray(b'G7K8")
: 78KT
+ bytearray(b'78KI")
: AQuT
bytearray(b'AMT ')
7385
: bytearray(b'7365")

usbseria-ONOZMXGH | 15200 6-N-1 @ ©ms ©om @0
| comected 00101 o @cs @ow @R

OEBPS/Images/es8-1.JPG

OEBPS/_page_map_.xml

OEBPS/Images/dfrobot.png

OEBPS/Images/dht22.png
a2 woN e

DHT22 pins
vee
DATA
NC
GND

OEBPS/Images/ep2-6.png
eoe CoolTerm 0.

D@EHC B X & (6 |

New Open Save Comect Disconnect ClearData Options ViewHex Help

>>> print(*hello micropython')
hello micropython
5>

‘usbserial-DNOZMX8H / 115200 8-N-1 @7X ©RS ©DOR @ 0co
Connected 00:17:05 @rx @cis @0k @R

OEBPS/Images/ch5-1.png

OEBPS/Images/ep3-2.JPG
vas sunaRUREE
PR

OEBPS/Images/em1-3.JPG
sparkfun

RF52632 Breakout

OEBPS/Images/ep2-13.png
eoe CoolTerm 0.

D@EHC B X & (6 ‘

New Open Save Comect Disconnect ClearData Options ViewHex Help

>>> import blinksvr
>>> blinksvr.runQ)

usbserlal-DNOZMXH / 115200 8-N-1 @71X OFRs ©QoR @oco
Comested 00:0029 O @crs @ @R

OEBPS/Images/thumbnail_sparkfun.png
SparkFun ESP8266 Thing
Development Workshop

Agus Kurniawan

OEBPS/Images/em1-6.png

OEBPS/Images/es4-4.JPG

OEBPS/Images/ep2-14.png
eoe CoolTerm 0.

D@EHC B X & (6

New Open Save Comect Disconnect ClearData Options ViewHex Help

>>> import os

>>> 0s.listdirQ)

['boot.py", 'blinksvr.py']
>>> os.remove('blinksvr.py')
>> 0s. listdir()
['boot.py']

>

usbseria-DNO2MXSH | 115200 8-N-1

@ ©rs @om @oco
Comected 00118:10 O @cs @0 @R

OEBPS/Images/ch5-2.png

OEBPS/Images/Kit_-Starter_-Arduino-Mega-Mainimage.png

OEBPS/Images/ep2-7.png
eoe CoolTerm 0.

D@EHC B X & (6

New Open Save Comect Disconnect ClearData Options ViewHex Help

>>> from machine import Pin
>>> led = Pin(s, Pin.0UT)
>>> led.value(1)

>>> ed.value(0)

>

usbserlal-DNOZMXH / 115200 8-N-1 @71X OFRs ©QoR @oco
Comested 00225 RX R

OEBPS/Images/ep2-9.png
eoe CoolTerm_0

DEE E B X & =6

New Open Save Connect Disconnect ClearData Options ViewHex Help
Toad: 0x3FFF0010, Len: 3408

Load:0x40078000, Len: 9488

Tood:0x40080000, Len: 252

entry 0x10080034

-[0332n1 (2290) cpu_start: Pro cpu up..[om

“[0332n1 (2290) cpu_start: Single core mode. [0

.[0132n1 (2293) heap_init: Initializing. RAM available for dynamic
allocation: . [0

.[0;32n1 (2328) heap_init: At 3FFAE2A0 len 00001060 (7 KiB): DRAM.
[om

.[0;32nT (2385) heap_init: At 3FFDAFDS len 00003028 (44 KiB): DRAM.
fon

.[0;32n1 (2042) heap_init: At 3FFEG440 len 000O38C (14 KiB): D/
TRAY. [on

.[0;32n1 (2502) heap_init: At 3FFE4350 len 00O1BCBO (111 KiB): D/
TRAY. [on

(033201 (2562) heap_init: At 40092040 len G0GODFD (S5 KiB): IRAM.
[em

-[0;32nT (2620) cpu_start: Pro cpu start user code.[on

.[0;32n1 (2779) cpu_start: Starting scheduler on PRO CPU..[0m
0SError: [Errno 2] ENOENT

MicroPython v1.9.1-436-gd3ad3fdb on 2017-08-18; ESP3Z module with
£5P32

Type "help()" for more information.

>

usbseria-DNO2MXSH / 115200 8-N-1 @1x ORrs Qo @0
‘Comnected 00:01:42 @r @cs @OR @R

OEBPS/Images/es6-2.png
eoe CoolTerm.0

D@EB P F @ =06

New Open Save Comect Disconnect ClearData Options ViewHex Help

>>> inport uartdeno
>>> uartdero. run()

deno UART

.[0;32mI (211861) uart: ALREADY NULL.[0m

.[0;32mI (211861) uart: queue free spaces: 10.[0m
write uart:50

write uart:51

write uart:52

write uart:53

write uart:54

write uart:ss

write uart:56

write uart:s7

‘ ‘usbserial-DNOZMX8H / 115200 8-N-1 @7X ©RS ©DOR @ 0cD
Connected 00:00:27 @rx @cis @0k @R

OEBPS/Images/kit.png

OEBPS/Images/py_thumbnail01.png
Python..

Programming by Exalm;l'g

OEBPS/Images/es4-5.JPG

OEBPS/Images/Kit_-Starter-Mainimage.png

OEBPS/Images/es6-1.JPG

OEBPS/Images/es4-7.png
eoe CoolTerm.0

DB E B X & <@ ‘

New Open Save Comect Discomnect ClearData Options View Hex Hp
blue
yellow
purple
aqua
red
green
blue
yellow
purple
aqua
red
green
blue
yellow
pursle

usbserlal-DNOZMXH / 115200 8-N-1 @71X OFRs ©Qom @oco
Comested 00 R

OEBPS/Images/thumbnail_nodemcu.png
&
e NodeMCU

Development Workshop

AgusKuriawan

OEBPS/Images/ep2-8.png
DSEE B X 8 =50

>>> from machine import Pin

>>> import time

>>> led = Pin(5, Pin.OUT)

>>> while 1:
. led.value(1)

time.sleep(2)

Led.value(0)

Press Delete/Backspace key,on
keyboard.;Then, press Enter,

usbserial-DNO2MX9H / 115200 8-N-1 @1 ©RTs ©DoR @ oCO
Connected 00:29:01 @rx @C’s @DSR @RI

